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Powder compacts (e.g., pharmaceutical tablets) manufactured on commerically available 
machines are not strictly identical but show inevitable variability in their weights, thick- 
nesses and compaction pressures. Consequently, the variability in fracture-stress data 
obtained from such brittle specimens is greater than that due to the inherent strength 
variability of the material itself. A modified Weibull analysis has been developed so that 
a more accurate estimate of the inherent variability of the mechanical strength of the 
material can be derived from test data obtained from commercially produced compacts; 
its application is illustrated. 

Nomenclature Pu upper punch compaction pressure 
D diameter t thickness 
f(pv) relative frequency of occurrence of speci- v volume 

mens with density p and volume v w weight 
F minimization function Wf fracture load 
i ascending rank number of a fracture p density 

stress at fracture stress 
m Weibull modulus O~ mean fracture stress of a batch 
Ntot number of specimens in a batch o~(Ov) mean fracture stress of specimens with 
N(pv) number of specimens with densities in density p and volume v 

the range p to p + dp and volumes in a0 scale parameter or normalizing factor 
the range v to v+  dv au location parameter or threshold stress 

P~ failure probability 

1. Introduction 
It is well established that nominally identical 
brittle specimens have variable fracture stresses 
both in simple uniaxial tension [1] and in more 
complex test modes. This observed variability is 
attributed to the different severity of the strength- 
governing flaws [2] in the different specimens of 
a batch and is directly associated with the brittle- 

ness O.e., the lack of ductility) of the material. 
The Weibull distribution function [3] has been 
widely used in attempts to characterize the fracture- 
stress variability. 

Powder compacts behave as brittle materials in 
mechanical strength tests (e.g., the diametrical 
compression test [4]) in that a range of fracture 
stresses are obtained from nominally identical 
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specimens, and previous work [5] has indicated 
that the fracture stresses of such specimens can 
be satisfactorily represented by a Weibull dis- 
tribution. 

A recent study [6] has examined the strength 
characteristics of powder compacts produced by 
single-ended compaction in commercially available 
production machines. These specimens cannot be 
considered nominally identical since they show 
significant variability in such properties as weight, 
thickness and density, associated with random 
variations in die-fill weight. The characterization 
of the fracture stresses of such specimens in terms 
of the unmodified Weibull distribution will give 
inaccurate and misleading Weibull parameter 
estimates [7] and consequently, if more reliable 
estimates of these parameters are required, a 
modified Weibull distribution function must be 
developed in which allowance is made for variations 
in the above properties. Such a modification is 
presented in this paper and its application in the 
analysis of strength-test results for a large batch of 
aspirin tablets is described. 

2. The Weibull distribution 
The distribution function atrributed to Weibull 
[3] refers to a large batch of nominally identical 
specimens and relates the cumulative failure 
probability, Pf, to the fracture stress, at, by the 
use of three independent parameters in the form: 

P t =  1 - -exp[ .  af~-Oulrnoo J (1) 

In this expression, m, the "Weibull modulus", 
is a reciprocal measure of fracture stress variability 
about the mean value, functionally related to the 
standard deviation of the distribution, ao is the 
"scale parameter" or "normafizing factor"; it does 
not correspond directly to any readily determined 
physical quantity but it can be shown [8] that it 
is related to the arithmetic mean of the fracture- 
stress distribution (Of) by the equation: 

where [(l/m)!] is the "gamma" function of 
[ ( l /m)+  11 [9]. Ou is the "location parameter" 
or "threshold stress", i.e., the minimum stress for 
which fracture can occur. For stresses smaller than 
o u the failure probability is zero. It is usual in 
WeibuU model-based work to assume that Ou is 
zero. With this assumption, Equations 1 and 2 
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reduce to the following equation: 

" t  : 1--exp[--(-~ ' )m(_a-!~tm].  (3) 
\a t /  i 

This is the standardized form of the Weibull 
distribution function, relating failure probability 
to fracture stress and characterized by the two 
parameters m and of. It is applicable in cases 
where the applied stress is uniaxial and uniform. 
For complex stress systems (e.g. the diametral 
compression test) the form of Equation 3 is 
unchanged if the "fracture stress", a~, is taken to 
be proportional to the fracture load, Wt. In the 
results presented here the relationship 

2N 
of -- - -  (4) 

wDt 

has been used throughout and the analysis has 
been based on Equation 3. 

3. Estimation of distribution parameters 
from fracture-stress data 

Clearly there is no difficulty in estimating the 
mean fracture stress from experimental data, but 
the estimation of the Weibull modulus is not so 
straightforward. Several procedures are available 
for this purpose [10]; the three most widely used 
are: 

(i) a linearization technique in which m is 
obtained as the slope of the ln ln ( 1 / ( I - - P 0 )  
versus In af linear plot; 

(ii) direct curve fitting using the "least squares" 
method; 

(iii) direct curve fitting using the "maximum 
likelihood" method. 

A number of publications (e.g., [10-12])  have 
compared these and other methods of estimating 
m and there is no strong evidence that one method 
is significantly better than the others. In the work 
presented here a computer program incorporating 
the "least squares" method was utilized which 
estimated m in the following way: 

(i) the values of fracture stress, af, for the 
specimens under consideration are "ranked" in 
order of increasing magnitude; 

(ii) the failure probability [Pt(i)] corresponding 
to the ith fracture stress level is obtained from the 
relationship 

i 
Pt(i) Nto t + 1' (5) 

where Ntot is the number of specimens in the 
batch; 
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Figure 1 Histogram of the forming pressure of 1005 
Aspirin tablets. 

(iii) using an assumed value of m the failure 
probability P~f (i) for each nominal fracture stress 
level is obtained from Equation 3; 

(iv) the function 
i = n  

F = ~. ( e ~ ( i ) - - e l ( i ) )  z (6) 
i= 1 

is evaluated; 
(v) using a minimization routine the value of m 

in Equation 3 is adjusted until the function F has 
a minimum value. The corresponding value of m 
is the "least squares fit" value of the Weibull 
modulus. 

4. Experimental work 
A batch of 1005 powder compacts, of 10mm 
diameter, was prepared by single-ended compaction 
using a commercially available punch and die 
machinet from a - 500 + 425 pm size fraction of 
acetylsalicylic acid (Monsanto Crystalline Aspirin - 
7016). A load cell containing strain gauges had 
been fitted behind the upper punch of the com- 
paction ~machine so that a quantitative measure 
of the force applied in compacting each specimen 
could be obtained. 

The compacting force for each tablet was 
determined to a precision of 1% from an ultra- 
violet galvanometer. There were no detectable 
differences in the diameters of a random sample 
of the tablets as measured to -+0.01 mm with a 
micrometer. Each tablet was weighed to +- 0.0001 g 

"rManesty Machines Ltd. Liverpool, UK - Model F3. 
SEngineering System (Nottingham) Ltd, UK - Model CT40. 

on an electrical balance and the thickness was 
measured to -+0.01mm using a micrometer. 
After manufacture the tablets were stored in air- 
tight containers for a period of 2 weeks before 
their tensile fracture stresses were determined by 
means of the diametral compression test [4], using 
a test machine~ designed specifically for this 
purpose. 

5. Experimental results 
Histrograms of the distributions of forming 
pressure (Pu), weight (w), thickness (t) and tensile 
fracture stress (at), are shown in Figs 1 to 4, and 
the corresponding mean values, standard deviations 
and coefficients of  variation and the derived 
volumes (v) and densities (p) are given in Table I. 

6. Analysis 
It is clear from these results that the properties 
of the tablets in this large batch were not strictly 
uniform and that the tablets could not properly 
be described as "nominally identical" in the 
intended sense. (These variations in properties 
arise from the nature of  the manufacturing process 
in which the powder is fed into the punch-die 
cavity under its own weight via the "feed shoe" 
of the tabletting machine. Inevitable variations 
in the flow behaviour of the crystalline aspirin 
result in variations in die-fill and consequently 
in tablet weight, etc.). 

Because of the variations in density and volume 
of the tablets within the batch, the observed 
strength variability cannot be entirely attributed 
to the intrinsic strength variability of the tablet 
material. It is well established [8] that volume 
variations alone, for example, ceteris paribus, will 
give rise to variations in the tensile fracture stress. 
It is to be anticipated, therefore, that the value of 
the Weibull modulus derived from the test data 
without regard to the variations will be systemati- 
cally incorrect. 

In order to demonstrate this effect and to 
indicate the magnitude of the error involved, 
Weibull modulus values were determined for (i) 
the entire batch (with no allowance for differences 
in volume and density), and (ii) 31 selected tablets 
with almost identical properties (the compaction 
pressures could not be differentiated and the 
coefficients of variation in weight and thickness 
were 0.22% and 0.13N, respectively). The modulus 
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Figure 2 Histogram of the weight of 1005 Aspirin tablets. 

values obtained were (i) 12.23-+0.27, and (ii) 
15.54 -+ 1.97. In spite of the greater probable error 
in the latter value, due to the much smaller sample 
size, these figures do suggest that non-uniformity 
of specimen properties may significantly affect the 
Weibull modulus estimate. Thus, if a more accurate 
estimate of this quantity is to be obtained then a 
modified analysis is required which must allow for 
factors, other than the inherent material strength 
variability, which may influence the fracture stress 
of specimens. 

In this study these factors have been represented 
by volume and density. It is known that fracture 
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Figure3 Histogram of the thickness of 1005 Aspirin 
tablets. 

stress is dependent on specimen volume [5] and 
a relationship between the mean fracture stresses 
of two batches of similar brittle specimens of 
different volume has been proposed. The weight, 
thickness and forming pressure of tablets produced 
in the simple fixed-punch displacement machine 
used in this work are interrelated. A change in 
either one of these quantities will give rise to a 
tablet of different density. Therefore, changes 
in tablet density have been used in the modified 
analysis presented here to reflect the random 
changes that occur in weight, thickness and form- 
ing pressure. 

A modified Weibull distribution function, in 
which the volume dependence and density depen- 
dence of fracture stress have been incorporated, 
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Figure 4 Histogram of the tensile fracture stress of 1005 
Aspirin tablets. 
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TABLE I 

Mean S.D. Coefficient 
of variation 

Compaction pressure (Pu) 176.3 MN m -2 16.6 MN m -2 9.41% 
Weight (w) 0.4123 g 0.0050 g 1.22% 
Thickness (t) 3.91 mm 0.04 mm 1.04% 
Fracture stress (af) 1.077 MN m -2 0.103 MN m -2 9.53% 
Volume (v) 309 mm 3 3.2 mm 3 1.04% 
Density (P) 1.332 Mg m -3 0.0055 Mg m-3 0.41% 

has been published [13] and is derived in the 
Appendix.  The modif ied function is: 

P~ = f ! f ( P v ) { l - e x p [ - ( l I )  m 

x dv dp, (7) 

in which the failure probabil i ty,  P~, of  specimens 
varying in volume and density is related to the 
associated fracture stress, at .  The parameters 
Of(pv) and f(pv), respectively, are the mean 

fracture stress and relative frequency o f  occurrence 
of  specimens with density p and volume v, m is the 
Weibull modulus and [ ( l /m)!]  is the "gamma" 
function o f  [ ( l /m)  + 1]. 

The integral in Equation 7 can be evaluated 
either analytically or numerically. For  analytical 
integration the distribution function f(pv) has to 
be expressed mathematical ly.  It is known that  the 
distribution function of  tablet  density is complex, 
with significant skewness and kurtosis, and since 

f(pv) 

it would be very difficult to represent this dis- 
t r ibut ion function mathematical ly,  and to integrate 
the resulting expression, a numerical evaluation 
o f  Equation 7 has been adopted.  

The distribution curve o f  a single variable can 
be represented graphically by a frequency dis- 
tr ibution.  In the present case, a two-variable 
histogram is required to depict a distr ibution 
"surface" defined by the two variables, volume 
and density. Sections through such a surface 
are shown in Fig. 5. The number of  specimens, 
N(pv) with densities in the range p to p + Ap and 
volumes in the range v to v +  Av is given by:  

N(pv) = f(pv) Ap AvNt, ot, 

i.e. 

N(pv) 
-/(pv) ~p av, (8) 

Nto, 

where Ntot is the total  number of  specimens. 
Equation 7 can be evaluated numerically by 

constructing a two-variable frequency distribution 

/ / / •  Density 

- 

Figure 5 Sections through a bivariate fre- 
quency distribution of volume and density. 

2951 



for the test data. This is done by dividing the 
range of densities into k equal intervals of Ap 
and the range of volumes into k equal intervals of 
Av, giving k 2 frequency distribution "blocks". If  
the central values of each density and volume class 

interval are /91, 02, P3 . . . .  , Oh . . . . .  Ok, and 
vl ,  v~, v3 . . . . .  v i . . . . .  vk, respectively, and there 
are Nhj tablets in each "block" with central values 
PhVi then: 

NhJ = f(phvj ) Ap AV 
g to t  

and Equation 7 becomes 

- -  

[ o, ~m]} (9) 

where Of(phvj) is the mean fracture stress of the 
specimens within the frequency distribution 
"block" with central values phv i. 

7. Application of the modified analysis 
The "least squares fit" value of the Weibull modu- 
lus, when corrected for variability in tablet density 
and tablet volume (i.e., the "corrected" m value), 
can be calculated in a similar manner to that given 
previously for the unmodified Weibull modulus. 
The procedure is given below. 

(i) The test data are ranked with respect to 
fracture stress, and the failure probability from 
mean ranking, Pf(i), for each of the Ntot stress 
levels is obtained as in Equation 5. 

(ii) The data are sorted into density and volume 
frequency distribution "blocks". 

(iii) The value of 

Of rn NN:~ {1--exp[--(l!)m(~)) 1} 
is evaluated for each histogram "block" using an 
assumed value of rn: 

(iv) The failure probability, P~(i), given by 
Equation 9 is obtained by summing the values of 
the above expression for each bivariate frequency 
distribution "block". 

(v) The function 

F = ~, (P~(i)-- Pf(i)) z 
1 

is evaluated. 
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Figure 6 The dependence of the, corrected Weibull modu- 
lus on the number of class intervals from a sample of 500 
taken from the 1005 tablets. 

(vi) An iterative procedure is employed and the 
value of m changed until the function F has been 
minimized. The corresponding rn value is the 
"least squares fit" value derived using the modified 
Weibull distribution function. 

The modified analysis has been applied to the 
batch of 1005 aspirin tablets. In order to examine 
the adequacy of the "block" representation of 
the bivariate frequency distribution, the number 
of blocks used in the analysis was systematically 
varied by splitting the density and volume ranges 
into 1, 2, 3 . . . .  , 20 intervals, giving 12, 22, 32, 
. . .  , 2 0 2  blocks. Further, in order to assess the 
importance of sample size, corrected modulus 
values were determined for groups of 30, 50, 100, 
150, 200 and 500 selected in a systematic manner 
from the whole batch. A sample of the results 
of this preliminary analysis is shown in Fig. 6 in 
which the corrected Weibull modulus, with standard 
error bands, is plotted against the number of class 
intervals used in the sub-division of the density 
and volume ranges for a sample of 500 tablets. 

It was suggested by this work that there was an 
optimum number of bivariate histogram blocks 
for this modified analysis which depends on 
the sample size. Fig. 7 shows the correct Weibull 
modulus values plotted against the average number 
of data per histogram block for the different 
sample sizes studied. With an average of less than 
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Figure 7 The corrected WeibuU 
modulus values plotted against 
the average number of tablets 
per block for different sample 
sizes. 

one data point per block, the derived modulus 
values vary erratically. With 2 to 4 data per block 
the corrected modulus values are not sensitive 
to this quantity and are not markedly dependent 
on sample size for samples greater than 100. It 
appears that samples less than 100 in size may not 
be adequate to represent the bivariate frequency 
distribution. As the number of data points per 
block increases the corrected modulus falls from 
15 (approximately) to 12 (approximately). (The 
1 x 1 block sub-division is equivalent to the 
unmodified analysis for which an m value of 12.23 
was obtained.) It was concluded that for a reliable 
estimate of the corrected Weibull modulus there 
should be 2 - 4  data points on average per histogram 
block and a minimum sample size of 100 should 
be used. 

The "best" corrected Weibull modulus value 
obtained using the entire batch was 15.16 -+ 0.34. 
This value agreed well with the value of 15.54-+ 
1.97 obtained from 31 specimens with almost 
identical properties and is considerably larger than 
the value of 12.23 obtained from the unmodified 
Weibull analysis. The corrected Weibull modulus 
of 15.16 is to be regarded as a satisfactory measure 
of the intrinsic material strength variability derived 
from these non-identical specimens. 

A p p e n d i x .  D e r i v a t i o n  o f  the  m o d i f i e d  
W e i b u l l  d i s t r i b u t i o n  f u n c t i o n  
A modified Weibull distributed function relating 
failure probability to stress is developed for 
specimens which exhibit variability in their den- 
sities and their volumes. 

Let f(pv) be the relative frequency of speci- 

mens with density p and volume v. If  Ntot tablets 
are tested up to a stress, of, then the number in 
the density and volume ranges p to p + Ap and 
v to v +  Av, which fail, is given by: 

number to fail = f(pv) Ap AVNtotP f (of) 

where Pf(of) is the failure probability of nominally 
identical specimens at stress of. 

Therefore, the total number of tablets to fail 
through the entire density range with volume v 
t o y +  Av 

= f f(pv)Pf(of)Nto t AV dp, 
o 

and the total fail through the entire volume range 

= f f f(pv)Pf(af)Nto t dv dp, 
o 0 

Therefore, 

number of specimens to fail 
failure probability = 

total number of specimens 

= J jf(pv) Pf(of) my dp. 
o o 

But, 

Therefore, the failure probability Pf at a stress of 
of for these non-identical specimens is given by: 

o o 

x {l -- exp ( ( 1 ' )  m ( ~ iml ] m y ]  dp, 
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where 0f(pv) is the mean fracture stress o f  speci- 

mens with densi ty P and vo lume v, and [ ( I /m) ! ]  

is the " g a m m a "  funct ion  o f  [ ( l / m )  + 1]. 
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